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Abstract Within the domain of historical document image analysis, the process of
identifying the spatial structure of a documentimage is an essential step in many docu-
ment processing tasks, such as optical character recognition and information extrac-
tion. Advancementsin layout analysis promise to enhance efficiency and accuracy using
specialized models tailored to distinct layouts. We introduce NetLay, a new dataset for
benchmarking layout classification algorithms for historical works. It consists of over
1,300 images of pages of printed Hebrew (or Hebrew-character) books in a variety of
styles, categorized into four different classes based on their layout (the number of text
columnsand regions). Ground truth was crafted manually at the page level. Furthermore,
we conduct an in-depth performance evaluation of various layout classification algo-
rithms, which are based on deep-learning models that learn to extract spatial features
fromimages. We evaluate our algorithms on NetLay and achieve state-of-the-art results
on the task of layout classification for historical books.
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1 Introduction

Numerous institutions and libraries worldwide are digitizing their
archives to democratize access and safeguard them from physical
deterioration. This calls for an ability to perform primary process-
ing of numerous texts automatically. In the field of document image
processing,* benchmark datasets with corresponding ground truth
are essential for evaluating, developing, and comparing algorithms,
as they also drive the creation of new approaches to address emerg-
ing challenges. Recent advancements in image analysis and computer
vision have automated most of the tasks in the pipeline for automatic
document analysis. Document layout analysis acts as a crucial pre-
liminary step for various document image analysis tasks. Advance-
ments in this field hold immense potential for boosting efficiency and
accuracy through the development of specialized models tailored to
diverse document layouts. Document image processing encompasses
classical machine learning techniques, requiring meticulous feature
selection, and deep neural network-based approaches where features
are inherently learned within the network. While both techniques
play a role, recent breakthroughs in image classification have been
primarily driven by deep-learning methods.

A key advantage deep learning offers over traditional approach-
es lies in its inherent ability to extract features directly from the da-
ta. This not only liberates paleographers from spending weeks or
months on feature selection but also empowers neural networks to
uncover novel and intricate features that might evade even the most
discerning human expert. A critical aspect of this endeavour is ad-
dressing the challenges inherent in ancient and medieval handwrit-
ing studies, necessitating the training of specialized models tailored
to distinct layouts. However, the scarcity of diverse stylistic repre-
sentations poses challenges for developing multi-domain general lay-
out analysis, compounded by the predominance of datasets contain-
ing Latin script.

Addressing these disparities is imperative for advancing histori-
cal document analysis research and development, particularly in his-
torical document layout analysis. However, the current landscape
of available datasets suffers from two major limitations that hinder
progress in historical document analysis. Firstly, the lack of stylistic

This research was funded in part by the European Union (ERC, MiDRASH, Project No.
101071829). Views and opinions expressed are, however, those of the authors only and
do not necessarily reflect those of the European Union or the European Research Coun-
cil Executive Agency. Neither the European Union nor the granting authority can be
held responsible for them.

1 Weuse the term ‘document’ in its general sense, ranging from literary works to per-
sonal notes, from full-length books to individual pages.
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diversity can significantly hamper the development of general layout
analysis methods capable of functioning effectively across multiple
domains. Secondly, the vast majority of existing datasets primarily
cater to documents in English, neglecting the inherent differences
in text features present in other languages. This disparity can lead
to problems when applying these methods to languages like Hebrew,
highlighting a critical gap in resources dedicated to historical doc-
ument layout analysis datasets. While significant strides have been
made in the domain of modern documents, addressing this discrep-
ancy is paramount to propelling research and development forward
in the field of historical document analysis.

Long-standing efforts have been devoted to creating layout analy-
sis datasets, with the huge dataset PubLayNet (Zhong, Tang, Jimeno
Yepes 2019) for contemporary documents emerging recently. How-
ever, existing datasets tailored for historical documents remain lim-
ited in scope. The majority of openly available historical document
layout datasets mostly address more popular scripts and languag-
es. The Europeana Newspapers Project (ENP) (Clausner et al. 2015)
contains common European languages like Dutch, English, German,
etc., from the seventeenth century onward, and contains 500 page
images. The PRImA Layout Analysis Dataset (Antonacopoulos et al.
2009) places emphasis on magazines and technical/scientific publica-
tions, the majority in Latin script. Addressing these disparities and
incorporating the representation of less common and older languag-
es - like Hebrew - in datasets are imperative for advancing histori-
cal document analysis research and development.

Before we address the more complicated question of Hebrew ‘man-
uscript’ layout, we must solve the problem of automatic layout clas-
sification for ‘printed’ Hebrew books. Hebrew books often have non-
standard layouts, multiple languages (Hebrew/Aramaic; Hebrew/
Yiddish, etc.) per page written in the same script and alphabet, and
different script type-modes per page (Ashkenazi square plus Orien-
tal semi-cursive [“Rashi”]). Sometimes, different text fields are not
clearly distinguishable.

To address these challenges, we present NetLay, a dataset contain-
ing 1352 pages, taken from books with diverse layouts sourced from
the collection of the National Library of Israel (NLI). In addition, we
propose several benchmark techniques to perform layout classifica-
tion. We implement various deep-learning models. We also propose
a multi-label encoding scheme based on the spatial and global inter-
dependencies of distinct layout elements.

The remainder of this paper is organized as follows: Section 2 is
a short survey of the related literature. Section 3 explains the prop-
erties of the dataset proposed. Section 4 describes various meth-
ods used for layout classification. In Section 5 we evaluate several
deep-learning classifiers and present our results.
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2 Related Work

Understanding the layout of a document serves as a preliminary step
for various document image processing tasks. These tasks include
information retrieval, page segmentation, word spotting, and opti-
cal character recognition (OCR), which aims to extract meaningful
textual information from these images. Breuel (2003) proposed nov-
el algorithms and statistical methods for flexible page layout anal-
ysis, combining globally optimal geometric algorithms with robust
statistical models and meticulous engineering techniques. Page seg-
mentation algorithms typically fall into two categories: bottom-up
and top-down. Bottom-up algorithms work in a hierarchical manner
to group elements such as pixels, patches, or connected components
into progressively larger regions. In contrast, top-down algorithms
divide the entire page into regions in a single step. Many of the ear-
ly page layout analysis methods often relied on assumptions about
document structure and employed a top-down approach, particular-
ly for well-formatted, modern binary (black and white) documents.
Typically, these methods rely on mathematical morphology and con-
nected components (Alarcén Arenas, Yari, Meza-Lovon 2018), Voro-
noi diagrams (Kise, Sato, Iwata 1998), or run length smearing algo-
rithms (Wong, Casey, Wahl 1982).

There are, however, also numerous other techniques that don’t
fit neatly into one of the above categories. These so-called mixed or
hybrid approaches aim to merge the efficiency of top-down meth-
ods with the robustness of bottom-up ones. Corbelli et al. (2016) pro-
posed a hybrid layout analysis pipeline, integrating both top-down
and bottom-up approaches. They employ the X-Y cut algorithm and
a support vector machine (SVM) classifier for illustration detection,
coupled with a convolutional neural network (CNN) and random for-
est classifier for content classification identifying different classes
of layout entities. Pixel classification approaches have also been ex-
plored for page segmentation. Wei et al. (2013) framed the prob-
lem as pixel classification, where each pixel is represented as a fea-
ture vector based on the image’s color. They employed techniques
like Gaussian mixture models (GMM), multi-layer perceptrons (MLP),
and SVM to classify pixels into categories such as decoration, back-
ground, periphery, and text pixels. Chen et al. (2014) subsequently
improved upon this work by incorporating more comprehensive fea-
tures encompassing texture and colour properties like smoothness,
Laplacian, Gabor dominant orientation histograms, local binary pat-
terns, and colour variance.

With the onset of deep learning, many authors have addressed the
problem of layout segmentation and analysis using different deep
neural network configurations. Borges Oliveira and Viana (2017) in-
troduced a novel one-dimensional CNN approach for rapid automatic
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layout detection of structured documents. Barakat and El-Sana (2018)
presented a binarization-free method for page layout analysis of his-
torical Arabic manuscripts, training an FCN to predict the class of
each pixel and segmenting main text and side text regions. Kosaraju
et al. (2019) proposed DoT-Net, a texture-based CNN for document
layout analysis that can capture textural variations among the mul-
ticlass regions of documents. Alaasam, Kurar and El-Sana (2019)
proposed a Siamese network-based layout analysis method tailored
for challenging historical Arabic manuscripts. Da et al. (2023) intro-
duced a two-stream vision grid transformer for layout analysis, con-
ducting visual pre-training in two stages utilizing 2D token-level and
segment-level understanding.

Although layout analysis and segmentation have been extensively
explored, layout classification remains relatively understudied. This
process involves categorizing documents based on their spatial ar-
rangement, aiming to comprehend the overall layout of content with-
in a document. This understanding serves as a cornerstone for the
development of advanced algorithms for segmentation and OCR. Hu,
Kashi and Wilfong (1999) introduced interval encoding, a novel fea-
ture set for capturing layout information. They utilize this encoding
within an HMM framework for fast document image classification
based solely on spatial layout.

3 Dataset

There is a critical necessity of implementing a layout classifier to aug-
ment the efficacy of dedicated models used in transcription systems
like eScriptorium (Kiessling et al. 2019). To that end, we sourced im-
ages from the digital collections of NLI, tailored specifically for this
task. High-resolution images of pages in the NetLay dataset were cu-
rated from a random selection of printed Hebrew books at NLI. From
each book, one page image was carefully chosen for inclusion in the
dataset. The dataset includes a total of 1352 images of single pages
or facing pages. It is balanced and comprises the following classes:
no text (“empty”), single column, two columns (occasionally on facing
pages), and complex layout (three or more regions, or regions with in-
sets), with 300, 442, 300, and 310 samples, respectively, for each class.

Facing pages, each containing one column, are usually one con-
tinuous work, but may also be two related works, one on even num-
bered pages and the other on odd ones. Two-column text may be read
across both columns (as in poetry, for example), or column by col-
umn, or they may be two works side by side - in the same language
or in two (perhaps a translation or commentary), in the same font or
not. Complex layouts often contain separate, but related, works by
different authors [fig. 1].
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Figurel Documentsamplesfrom NetlLay: (a) no text; (b) single column; (c) two column; (d) complex layout.
Thefigure containsillustrative examples of documentimages representing each class

within the dataset. The dataset s publicly availableat https://github.com/TAU-CH/
midrash_layout_classification_using_multilabel_vgg/tree/main/data

4 Methods

The challenge of layout class identification presents itself as an
image classification task, where the goal is to assign a specific
class to a given document image. Given the complexity and varia-
bility of layouts, employing deep-learning models emerges as the
most effective strategy for image classification tasks. Therefore,
our approach uses deep-learning-based models to accurately cate-
gorize document images into distinct layout structures. In this sec-
tion, we outline the experimental setup, including model architec-
ture, training methodology, and evaluation procedures. We adopt
state-of-the-art deep-learning models tailored for image classifica-
tion tasks. To assess the performance of our approach, we conduct
several benchmark experiments. These experiments aim to evalu-
ate the efficacy of the proposed deep-learning models in accurate-
ly classifying layout structures. To ensure a robust evaluation, we
divided our dataset into three distinct subsets: training (80%), vali-
dation (10%), and testing (10%). This split allows for effective model
training, hyperparameter tuning, and unbiased performance eval-
uation. All the experiments for training the deep-learning models
were conducted on a machine equipped with an NVIDIA Titan T4
GPU with 15 GB of memory.
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Predictions are evaluated based on four standard performance
metrics: accuracy, precision, recall, and F1-score.

We employ two methods for the task of document image layout
classification.

1.1 Single Label Classification

Single-label classification involves assigning one class label to each
instance from a predefined set of classes. In the context of document
layout classification, our objective is to categorize layouts into four
distinct classes: no text, single column, double column, or complex.

Below, we explore various architectures and propose methods em-
ployed for this task.

EfficientNetv2 We utilize EfficientNetV2 (Tan, Le 2021) for spatial
feature extraction, pretrained on the ImageNet dataset. The core ar-
chitecture employs the mobile inverted bottleneck (MBConv) (Sandler
et al. 2018), with squeeze and excitation optimization.

In the EfficientNet family, comprising models from EfficientNet
B0 to B7 (Tan, Le 2019) which employs mobile inverted bottleneck
convolution (MBConv) with squeeze and excitation optimization. The
variations can be seen in MBConv block count, width, depth, reso-
lution, and overall size of the model. EfficientNetV2 introduces en-
hancements like fused-MBConv blocks alongside regular MBConv
blocks, which lead to higher accuracies with fewer parameters. Ef-
ficientNetsV1s demonstrate adaptability through transfer learn-
ing, excelling when trained on diverse datasets. However, challeng-
es such as slow training with large image sizes and inefficiencies in
early layers due to depthwise convolutions are evident. Addressing
these concerns, EfficientNetV2 introduced novel design elements
and employs training-aware neural architecture search and scal-
ing strategies to jointly optimise model accuracy, training speed,
and parameter size.

Table1l The multi-label encoding scheme

Class Page Half page Page Half page  Multiple
widthtext widthtext height height fonts
line time vertical vertical
separator separator
Empty 0 0 0 0 0
Single column 1 0 0 0 0
Two columns 0 1 1 0 0
Complex layout 1 1 0 1 1
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Table2 Performance metrics (accuracy, precision, recall, and F1), for each class,
using EfficientNetV2, ViT, and VGG16 with multi-label encoding

Method Class Accuracy Precision Recall F1Score
0 (Empty) 98.50% 0.94 1.00 0.97
Efficient-Net 1 (Single column) 93.98% 0.97 0.84 0.90
2 (Two columns) 95.49% 0.83 1.00 0.91
3 (Complexlayout) 93.98% 0.90 0.84 0.87
0 (Empty) 99.25% 1.00 0.97 0.98
ViT 1 (Single column) 94.78% 0.89 0.95 0.92
2 (Two columns) 98.51% 0.94 1.00 0.97
3 (Complexlayout) 94.03% 0.93 0.81 0.86
0 (Empty) 99.26% 0.97 1.00 0.98
VGG16 1(Single column) 99.26% 1.00 0.98 0.99
2 (Two columns) 98.53% 1.00 0.93 0.96
3 (Complexlayout) 98.53% 0.95 1.00 0.97

Vision transformer We also experiment with the vision transformer
(ViT) architecture (Dosovitskiy et al. 2021), which transforms image
processing by dividing input images into fixed-sized patches, depart-
ing from the conventional pixel-based evaluation of CNNs. ViT encap-
sulates each patch into a latent representation while retaining posi-
tional information, forwarding them through a transformer encoder.
The input image, denoted x € R®*"*¢, undergoes transformation into a
sequence of flattened 2D patches x € R¥#20, where N = W - H/P?sig-
nifies the resulting number of patches of size P x P, and H x W is the
resolution of the image. With C representing the channels, typical-
ly 3 for RGB images, our model embraces a patch size of 16 x 16 pix-
els. This architecture facilitates the breakdown of images into man-
ageable patches, subsequently processed through transformer layers
adept at capturing both local and global dependencies. Our method-
ology aligns with the ViT paradigm, expanding the adaptability of
transformers to encompass image classification tasks.

4.1 Multi-Label Classification

Multi-label classification involves the assignment of multiple labels
to each instance simultaneously. It involves predicting multiple cat-
egories or classes for a given input, making it a more complex prob-
lem compared to traditional single-label classification. To address
potential overlap in class characteristics, we also employ a multi-la-
bel classification approach. Each of the four classes is encoded as a
five-dimensional vector, allowing for shared attributes across class-
es [tab. 1]. This method offers distinct advantages, particularly in
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handling overlapping attributes among certain classes. Furthermore,
the extraction of spatial document image features for layout classi-
fication is facilitated through the utilization of a VGG16 (Simonyan,
Zisserman 2015) based backbone.

Complex layout classification We delve deeper into understanding
the complexities of layout structures. Figure 2 showcases various
examples from the dataset, highlighting the variability in spatial ar-
rangements of text columns within the complex layout structure. For
instance, Figure 2(a) exhibits a C type structure, while Figure 2(b)
displays an L type arrangement. Moreover, Figures 2(c) and (d) por-
tray complex spatial configurations bearing resemblance to an O and
a U, respectively [fig. 2].

We identified seven distinct subcategories within the complex lay-
out arrangement [fig. 3]. These subcategories are characterized by
different spatial configurations of text columns, including variations
suchas C, L, U, and O shapes, along with their corresponding reflect-
ed counterparts - C2, L2, and U2. Each of these subcategories cap-
tures unique layout features, contributing to the complexity of the
overall structure, and poses different challenges for accurate clas-
sification. Through training an end-to-end CNN-based classifier, we
aimed to comprehend these features and effectively capture the nu-
anced spatial relationships within the complex layout structures. Our
experiments yielded a classification accuracy of 60%, indicating the
model’s ability to distinguish these spatial features significantly bet-
ter than random guessing.
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Figure 3 Confusion matrices for the different classifiers. (a) Confusion matrix for EfficientNetV2;
(b) Confusion matrix for ViT; (c) Confusion matrix for multilabel encoding with VGG16
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5 Results

In this section, we present the outcomes obtained from various
deep-learning classifiers, which serve as foundational benchmarks
for future comparative analyses. The aim was to assess the effective-
ness of the proposed features and methods introduced here for fa-
cilitating efficient document layout classification. We achieved com-
petitive performance on the document classification task. Figures
4a-c showcase the confusion matrices corresponding to the trained
models.

Figures4a-c Examples of complex layout structures with corresponding spatial arrangement features

The evaluation metrics, including accuracy, precision, recall, and
F1, are utilized to assess the models’ performance across different
classes, as showcased in Table 2. Notably, employing EfficientNetV2
yielded an impressive overall accuracy of 90.98%, while the ViT mod-
el achieved an even higher accuracy of 93.28%. Furthermore, lev-
eraging the multi-label encoding approach with VGG16 resulted in
the highest accuracy of 97.79%. To elucidate the influential features
guiding the model’s final prediction, we employ the gradient-weight-
ed class activation mapping (Grad-CAM) technique (Selvaraju et al.
2017). This approach leverages the gradients of a target class flow-
ing into the underlying CNN architecture, specifically VGG16 in our
study, to generate a coarse localization map, thereby accentuating
pivotal regions crucial for predicting the target class. Figure 5 de-
picts the salient features relevant to the classification of layout struc-
tures [fig. 5].
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Figure5 Visualization of important features for classification using Grad-CAM

6 Conclusions and Future Work

Conducting layout analysis on simple layouts, containing one or two
columns of text, is relatively straightforward, but analysing complex
layouts that feature text columns in structures diverging from the
standard one or two columns, such as L, U, O, and C shapes, along-
side other complexities, presents significant challenges. Therefore,
layout classification is vital for distinguishing between simple and
complex layouts. This distinction allows for the application of exist-
ing layout analysis algorithms on simple layout document images but
specialized analysis methods for complex layout document images.

We have introduced a dataset designed for benchmarking layout
classification methods, along with a single-label multi-classification
algorithm and a multi-label multi-classification algorithm to address
the layout classification challenge. Our findings indicate that multi-la-
bel encoding leads to a more separable feature space, thereby en-
hancing accuracy. The visualization of classifiers further supports
this conclusion, revealing that the classifiers indeed focus on features
employed to encode the multi-labels for each class.

Future work includes further improving results for complex lay-
out classification in a variety of languages and scripts, considering
pages with marginal and intertextual comments, considering books
with changes of script size and/or language within paragraphs, and
pages from incunabula and other early printed books with unusual
nonstandard layouts. This will be combined with reading-direction
recognition, language, and script detection to achieve complex page
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analysis. These algorithms would serve as a solid base for efficient
automatic processing of printed books. At the same time, the auto-
matic classification of page layouts for printed books is an important
preparatory step for the more challenging task of page layout anal-
ysis of handwritten manuscripts.
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